

circuit diagrams.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Electronic Devices and Circuits (19EC0402) Course & Branch: B. Tech - ECE

Year & Sem: II-B. Tech & I-Sem Regulation: R19

<u>UNIT –I</u> PN JUNCTION DIODE

1. a) Define cut in voltage of a PN Junction diode and give its values for Si and Ge diodes.[L1][CO1][4M] b) Elaborate the action of PN junction diode under forward bias and reverse bias and sketch		
its V-I Characteristics.	[L6][CO1][8M]	
2. a) Analyze the current components in a PN diode and develop the expression for diode current		
equation.	[L6][CO1][8M]	
b) When a reverse bias is applied to a germanium PN junction diode, the reverse satura		
current at room temperature is 0.3µA. Determine the current flowing in the diode when		
0.15V forward bias is applied at room temperature.	[L5][CO4][4M]	
3. a) The reverse saturation current of a silicon PN junction diode is 10µA. Solve the	[20][00.][]	
diode current for the forward bias voltage of 0.6V at 25°C.	[L3][CO4][5M]	
b) Demonstrate the effect of temperature on V-I characteristics of PN junction diode.	[L2][CO1][7M]	
4. a) Draw the ideal diode characteristics and give its circuit symbol.	[L1][CO1][4M]	
b) A p-n junction germanium diode has a reverse saturation current of 0.10 μA at the r		
temperature of 27° C. It is observed to be 30μ A, when the room temperature is increased.		
Calculate the new room temperature. Also determine the current passing through the diode		
at this new temperature.	[L5][CO4][8M]	
5. a) Explain about Diode resistances and determine the expression for forward dynamic		
5. a) Explain about Blode resistances and determine the expression for forward dynamic	[L2][CO1][8M]	
b) Examine the forward resistance of a PN junction diode when the forward current is 5mA		
at $T = 300$ K. Assume Silicon diode.	[L4][CO4][4M]	
6. a) Define Transition and Diffusion capacitances of a PN Junction Diode.	[L1][CO1][4M]	
b) Determine the expression for Transition capacitance of a PN Junction Diode.	[L1][CO1][4M] [L5][CO1][8M]	
7. a) List the application of PN junction and Zener diodes.	[L1][CO1][4M]	
b) Determine the expression for Diffusion capacitance of a PN Junction Diode.	[L1][CO1][4M] [L5][CO1][8M]	
8. a) Define Breakdown voltage and give the circuit symbol for Zener Diode.	[L1][CO1][4M]	
b) Summarize the Breakdown mechanisms in PN Junction Diode.	[L2][CO1][8M]	
9. a) Draw and explain the V-I characteristics of Zener diode.	[L2][CO1][6M]	
b) Show that the Zener diode can act as a voltage regulator with a neat diagram.	[L1][CO5][6M]	
10. a) Explain Positive and Negative Diode Clippers with neat waveforms.	[L2][CO5][6M]	
b) What is a Clamper circuit? Describe about positive and negative clampers with neat		

[L1][CO5][6M]

<u>UNIT –II</u> RECTIFIERS, FILTERS AND SPECIAL PURPOSE DEVICES

1. a) Draw the circuit diagram of a Half wave rectifier and explain its operation with the help of waveforms. [L1][CO1][5M] b) Determine the expressions for Average DC current, Average DC Voltage, RMS Value of Current, DC Power Output and AC Power input of a Half Wave Rectifier. [L4][C01][7M] 2. a) Draw the circuit diagram of a Full wave rectifier and with the help of waveforms describe its operation. [L1][CO1][5M] b) A full wave rectifier circuit is fed from a transformer having a center-tapped secondary winding. The rms voltage from either end of secondary to center tap is 30V. If the diode forward resistance is 2Ω and that of the half secondary is 8Ω , for a load of 1 K Ω . Solve DC power delivered to the load, efficiency of rectification. [L3][CO2][7M] 3. a) Determine the expressions for Average DC current, Average DC Voltage, RMS Value of Current, DC Power Output and AC Power input of a Full Wave Rectifier. [L5][CO1][6M] b) A half wave rectifier is supplied from a 230V, 50 Hz supply with a step-down ratio of 3:1 to a resistive load of $10k\Omega$. The diode forward resistance is 75Ω while transformer secondary is 10Ω . Examine maximum, average, RMS values of current, DC output voltage, efficiency of rectification and ripple factor. [L4][CO1][6M] 4. a) With neat circuit diagram and waveforms, illustrate the construction and working of Bridge rectifier. [L2][CO1][5M] b) A $5K\Omega$ load is fed from a bridge rectifier connected across a transformer secondary whose primary is connected to 460V, 50 Hz supply. The ratio of number of primary turns to secondary turns is 2:1. Estimate dc load current, ripple voltage and PIV rating of diode. [L5][CO4][7M] 5. a) Draw the circuit diagram of Full wave rectifier with inductor filter and illustrate its operation. Also derive the expression for ripple factor. [L1][CO3][7M] b) Find the value of inductance to be used in the inductor filter connected to a full wave rectifier operating at 60 Hz to provide a dc output with 4% ripple for a 100Ω load. [L1][CO2][5M] 6. a) With neat circuit diagram and waveforms, Explain the operation of Full wave rectifier with capacitor Filter and determine the expression for its ripple factor. [L2][CO3][[6M] b) Explain the working and characteristics of SCR in Forward and Reverse Blocking Mode. [L2][CO1][6M] 7. a) Demonstrate the working principle of LC filter with neat diagram and derive the expression for its ripple factor. [L2][CO3][6M] b) Explain the working principle of CLC or π section filter and also derive the expression for ripple factor. [L2][CO2][6M] 8. a) Explain dynamic scattering LCD and field effect LCD working with neat diagrams. [L1][CO3][7M] b) Explain working principle and characteristics of LED with neat diagram. Also list the applications of LED. [L2][CO2][5M] 9. a) Explain the principle involved in working of Varactor diode and sketch its characteristics. [L2][CO5][5M] b) Explain the volt ampere characteristics of a Tunnel diode with the help of energy band diagrams [L2][CO5][7M] 10. a) Demonstrate the working and characteristics of UJT with neat diagram. [L2][CO5][6M] b) Explain with diagram the construction, working and applications of Solar Cell. [L2][CO5][6M]

<u>UNIT –III</u> <u>TRANSISTOR CHARACTERISTICS: BJT & FET</u>

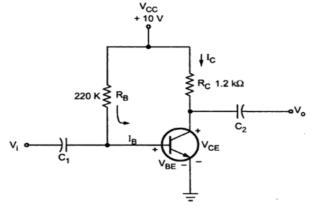
1. a) Explain the operation of NPN transistor with neat diagram.	[L2][CO1][7M]	
b) If the base current in a transistor is $20\mu A$ when the emitter current is 6.4mA, what		
are the values of α and β ? Also calculate the collector current.	[L1][CO4][5M]	
2. a) Explain the current components of PNP transistor and deduct the definitions of Emitter Efficiency,		
Base Transportation Factor and Large signal current gain.	[L2][CO1][7M]	
b) With neat diagram, Interpret the Input and Output characteristics of a BJT in CB		
Configuration.	[L2][CO5][5M]	
3. Explain the Input and Output characteristics of a BJT in CE Configuration. Indicate th	e regions	
of operations in the output characteristics and list the applications in those regions.	[L2][CO5][12M]	
4. a) Illustrate the Input and Output characteristics of BJT in CC Configuration. Also Obtain the expression		
for Output collector current equation for a Transistor in CC configuration.	[L2][CO5][6M]	
b) With a neat diagram, Explain how a transistor acts as an amplifier?	[L2][CO1][6M]	
5. a) Define α , β and Υ of a Transistor and Evaluate the relation between them.	[L5][CO1][6M]	
b) For a transistor, the leakage current is 0.1μA in CB configuration, while it is 19μA in CE		
configuration. Find $\alpha \& \beta$ of the same transistor?	[L1][CO4][6M]	
6. Explain the construction and working principle of N-channel JFET.	[L2][CO1][12M]	
7. a) Sketch the JFET Volt-Ampere Characteristics and determine FET parameters.	[L1][CO1][8M]	
b) Compare the performance of BJT with FET.	[L2][CO1][4M]	
8. a) With the help of neat diagram, Explain the operation and characteristics of n-channel		
enhancement type MOSFET.	[L2][CO5][8M]	
b) List difference between depletion and enhancement MOSFET.	[L1][CO1][4M]	
9. Interpret the operation and characteristics of n-channel depletion type MOSFET with diagram.		
	[L2][CO5][12M]	
10. a) Derive the relation between Output collector current equation for a Transistor in CE configuration.		
	[L3][CO1][8M]	
b) Compare the performance of JFET with MOSFET.	[L2][CO1][4M]	

UNIT- IV

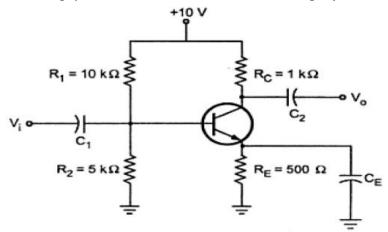
TRANSISTOR BIASING AND THERMAL STABILIZATION

- 1. a) Define Transistor Biasing and explain the need for Biasing. [L1][CO3][5M]
 - b) Explain the concept of DC and AC Load lines and discuss the criteria for fixing the Q-point.
- [L2][CO3][7M] 2. a) List the different types of Biasing a Transistor and explain the Fixed Bias of a
- **Transistor** [L4][CO6][5M] b) Explain Collector to Base bias of a Transistor with neat circuit diagram. [L2][CO6][7M]
- 3. a) Determine the expressions for the stability factors S, S and S of a BJT Fixed bias. [L5][CO3][8M]
 - b) What are the disadvantages of fixed bias circuit of BJT? [L1][CO1][4M]
- 4. a) Define Stability Factor S. Derive the stability factor S for collector to base bias of BJT.

[L1][CO6][6M]


b) Design a collector to base bias circuit for the specified conditions: $V_{cc} = 15V$, $V_{CE} = 5V$, $I_C = 5$ mA and $\beta = 100$.

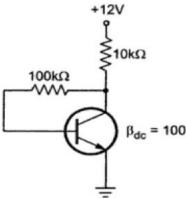
[L6][CO2][6M] [L5][CO6][12M]


5. Estimate the stability factors S, S and S of a BJT Voltage Divider bias.

6. a) For the circuit shown in the Figure, solve I_B, I_C, V_{CE}, V_B, V_C and V_{BC}. Assume that $V_{BE} = 0$ and $\beta = 50$.

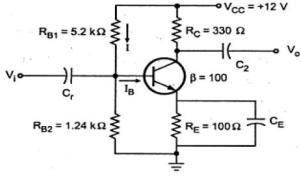
[L3][CO2][6M]

- b) Interpret Diode Compensation Techniques for the parameters V_{BE} and I_{CO}. [L2][CO3][6M]
- 7. a) Illustrate Thermistor Compensation Technique. [L2][CO3][6M]
 - b) For the circuit shown in Fig. $\beta = 100$ for the silicon transistor. Simplify V_{CE} and I_{C} . [L4][CO2][6M]



8. a) Explain Thermal Runaway and Thermal Resistance.

[L2][CO3][6M]


b) Solve for the Q-point values for the circuit shown in the Fig.

[L3][CO2][6M]

9. Draw the dc load line for the following transistor configuration. Obtain the quiescent Point.

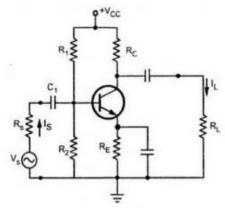
[L1][CO2][12M]

10. a) Explain Sensistor Compensation Technique.

b) Estimate the condition for achieving Thermal Stability.

[L2][CO3][5M]

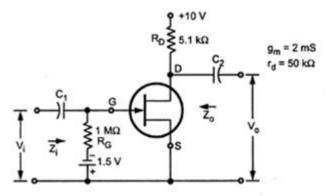
[L5][CO3][7M]


<u>UNIT- V</u> SMALL SIGNAL LOW FREQUENCY TRANSISTOR AMPLIFIER

- 1. a) Why hybrid model is used for the analysis of BJT amplifier at low frequencies? Draw the hybrid model for CE transistor and derive the hybrid parameters.

 [L1][CO1][8M]
 - b) Discuss about the frequency response of an amplifier.

[L6][CO1][4M]


- 2. Using low frequency h-parameter model, Deduct the expressions for voltage gain, current gain, input impedance and output admittance for a BJT Amplifier in CE configuration. [L5][CO3][12M]
- 3. a) With neat diagram, develop the expressions for parameters of CE amplifier using approximate analysis. [L6][CO3][6M]
 - b) Examine the expressions for current gain, voltage gain, input impedance and output impedance of CB amplifier using simplified hybrid model. [L4][CO3][6M]
- 4. a) Determine the parameters Ai, R_i , A_v and R_0 of Common Collector Amplifier using simplified hybrid model analysis. [L5][CO3][6M]
 - b) A voltage source of internal resistance, $R_s = 900\Omega$ drives a CC amplifier using load resistance $R_L = 2000\Omega$. The CE h parameters are $h_{fe} = 60$, $h_{ie} = 1200\Omega$, $h_{oe} = 25 \mu A/V$ and $h_{re} = 2 \times 10^{-4}$. Solve A_I , R_i , A_v and R_0 using approximate analysis. [L3][CO2][6M]
- 5. A CE amplifier is driven by a voltage source of internal resistance $R_s = 800\Omega$ and the load impedance of $R_L = 1000\Omega$. The h-parameters are $h_{ie} = 1k$, $h_{fe} = 50$, $h_{oe} = 25 \mu A/V$ and $h_{re} = 2 \times 10^{-4}$. Find current gain, voltage gain, input impedance and output impedance using exact analysis and approximate analysis. [L1][CO2][1
- 6. For a CB transistor amplifier driven by a voltage source of internal resistance $R_s = 1200\Omega$, the load Impedance of $R_L = 1000\Omega$. The h parameters are $h_{ib} = 22\Omega$, $h_{rb} = 3 \times 10^{-4}$, $h_{fb} = -0.98$, $h_{ob} = 0.5 \mu \text{A/V}$. Find current gain, voltage gain, input impedance and output impedance using exact analysis and approximate analysis. [L1][CO2][12M]
- 7. Consider a single stage CE amplifier with R_s = $1k\Omega$, R_1 = $50k\Omega$, R_2 = $2k\Omega$, R_c = $1k\Omega$, R_L = $1.2k\Omega$, h_{fe} =50, h_{ie} =1.1k, h_{oe} = $25\mu A/V$ and h_{re} = 2.5×10^{-4} , as shown in Fig.Solve A_I , R_i , A_v , A_{vs} , A_{IS} and R_0 . [L3][CO2][12M]

8. a) Develop the expression for current gain, voltage gain, input impedance and output impedance for Common Emitter Amplifier with Emitter Resistor using simplified hybrid model.

[L3][CO3][6M]

- b) A CE amplifier is driven by a voltage source of internal resistance $R_s = 1000\Omega$ and the load impedance of R_C =2k Ω . The h-parameters are h_{ie} =1.3k, h_{fe} =55, h_{oe} = 22 μ A/V and h_{re} = 2 x10⁻⁴. Neglecting biasing resistors, Estimate the value of current gain, voltage gain, input impedance, output impedance for the value of Emitter Resistor R_E = 200 Ω inserted in the emitter circuit. [L5][CO2][6M]
- 9. a) For the circuit shown in Figure below, Determine input impedance, output impedance and voltage gain. [L5][CO5][6M]

- b) Label the circuit diagram of JFET Common Source amplifier with voltage divider bias for bypassed R_s and determine the expression for input impedance, output impedance and voltage gain. [L1][C06][6M]
- 10. Summarize the expressions for input impedance, output impedance and voltage gain of JFET Common Drain amplifier with neat diagram. [L2][CO5][12M]